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ABSTRACT 
 

The relative spectral response (RSR) characterization of the JPSS-1 VIIRS spectral bands has achieved “at-

launch” status in the VIIRS Data Analysis Working Group February 2016 Version 2 RSR release.  The 

Version 2 release improves upon the June 2015 Version 1 release by including December 2014 NIST T-

SIRCUS spectral measurements of VIIRS VisNIR bands in the analysis plus correcting CO2 influence on the 

band M13 RSR.  The T-SIRCUS based characterization is merged with the summer 2014 SpMA based 

characterization of VisNIR bands (Version 1 release) to yield a “fused” RSR for these bands, combining the 

strengths of the T-SIRCUS and the SpMA measurement systems.  The M13 RSR is updated by applying a 

model-based correction to mitigate CO2 attenuation of the SpMA source signal that occurred during M13 

spectral measurements.  The Version 2 release carries forward the Version 1 RSR for those bands that were 

not updated (M8-M12, M14-M16A/B, I3-I5, DNBMGS).  The Version 2 release includes band average (over 

all detectors and subsamples) RSR plus supporting RSR for each detector and subsample.  The at-launch band 

average RSR have been used to populate Look-Up Tables supporting the sensor data record and 

environmental data record at-launch science products.   Spectral performance metrics show that JPSS-1 

VIIRS RSR are compliant on specifications with a few minor exceptions.  The Version 2 release, which 

replaces the Version 1 release, is currently available on the password-protected NASA JPSS-1 eRooms under 

EAR99 control. 
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1. INTRODUCTION 
 

The Joint Polar Satellite System-1 (JPSS-1, henceforth referred to as “J1” in this paper) Visible Infrared 

Imaging Radiometer Suite (VIIRS) instrument
[1]

, the second in the series (S-NPP VIIRS launched in 2011), is 

approaching an anticipated launch in the 1st quarter of 2017.  Accordingly, pre-launch performance 

characterization has been completed and Look-Up Tables supporting the sensor data record (SDR) and 

environmental data record (EDR) algorithms have been generated.  This includes the designation of “at-

launch” relative spectral response (RSR) in the form of the VIIRS Data Analysis Working Group (DAWG) 

February 2016 Version 2 (V2) RSR release.  The V2 RSR release improves upon and replaces the June 2015 

Version 1 (V1) release
[2]

.   
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Table 1. J1 VIIRS specifications and measured spectral performance of the DAWG V2 band average RSR, plus 

S-NPP at-launch integrated out-of-band (IOOB) performance. Red boxes indicate specification exceeded. 

Focal Plane Legend:        - VisNIR;          - S/MWIR;          - LWIR 

Band 
Specified 

Center (nm) 

Measured 

Center 

(nm) 

Specified 

50% 

Bandpass 

(nm) 

Measured 

50% 

Bandpass 

(nm) 

Specified 

Lower 

1% Limit 

(nm) 

Measured 

Lower 

1% Limit 

(nm)  

Specified 

Upper 

1% Limit 

(nm) 

Measured 

Upper 1% 

Limit 

(nm) 

Specified 

IOOB 

(%) 

J1  

Measured 

IOOB 

(%) 

S-NPP 

Measured 

IOOB 

(%) 

I1 640 ±6 642.3 80 ±6 78.9 ≥565 594.4 ≤715 691.5 0.5 0.11 0.39 

I2 865 ±8 867.4 39 ±5 36.5 ≥802 842.7 ≤928 892.3 0.7 0.12 0.52 

I3 1610 ±14 1603.2 60 ±9 60.7 ≥1509 1544.3 ≤1709 1667.7 0.7 0.44 0.48 

I4 3740 ±40 3747.6 380 ±30 387.5 ≥3340 3474.1 ≤4140 4015.2 0.5 0.16 0.16 

I5 11450 ±125 11483.1 1900 ±100 1875.1 ≥9900 10170.8 ≤12900 13090.6 0.4 0.08 0.06 

M1 412 ±2 410.9 20 ±2 18.2 ≥376 395.6 ≤444 425.1 1.0 0.35 2.19 

M2 445 ±3 444.8 18 ±2 17.0 ≥417 429.2 ≤473 457.7 1.0 0.52 0.93 

M3 488 ±4 488.7 20 ±3 19.1 ≥455 472.9 ≤521 504.4 0.7 0.43 1.15 

M4 555 ±4 556.5 20 ±3 18.1 ≥523 540.2 589 573.7 0.7 0.37 3.65 

M5 672 ±5 667.3 20 ±3 19.3 ≥638 649.7 ≤706 685.1 0.7 0.37 2.70 

M6 746 ±2 746.2 15 ±2 13.4 ≥721 734.2 ≤771 758.2 0.8 0.40 1.64 

M7 865 ±8 867.6 39 ±5 36.5 ≥801 842.8 ≤929 892.5 0.7 0.16 0.62 

M8 1240 ±5 1238.4 20 ±4 26.1 ≥1205 1214.0 ≤1275 1264.9 0.8 0.48 0.49 

M9 1378 ±4 1375.8 15 ±3 14.5 ≥1351 1362.0 ≤1405 1390.0 1.0 0.41 1.01 

M10 1610 ±14 1603.8 60 ±9 60.2 ≥1509 1545.7 ≤1709 1667.6 0.7 0.43 0.46 

M11 2250 ±13 2258.2 50 ±6 52.0 ≥2167 2209.4 2333 2314.4 1.0 0.35 0.40 

M12 3700 ±32 3697.9 180 ±20 194.8 ≥3410 3519.1 ≤3990 3893.8 1.1 0.33 0.34 

M13 4050 ±34 4070.0 155 ±20 153.0 ≥3790 3909.1 ≤4310 4224.7 1.3 0.40 0.35 

M14 8550 ±70 8580.3 300 ±40 340.1 ≥8050 8336.3 ≤9050 8879.3 0.9 0.19 0.21 

M15 10763 ±113 10730.9 1000 ±100 1001.7 ≥9700 9916.9 ≤11740 11638.7 0.4 0.35 0.40 

M16A 12013 ±88 11882.8 950 ±50 914.6 ≥11060 11104.1 ≤13050 12692.5 0.4 0.39 0.39 

M16B 12013 ±88 11883.0 950 ±50 934.5 ≥11060 11101.5 ≤13050 12698.5 0.4 0.38 0.37 

M161 12013 ±88 11882.9 950 ±50 924.8 ≥11060 11102.8 ≤13050 12695.7 0.4 0.39 - 

DNBMGS2 700 ±14 693.1 400 ±20 381.1 ≥470 487.8 ≤960 906.9 0.1 0.00 0.00 

DNBLGS 700 ±14 694.8 400 ±20 391.4 ≥470 491.0 ≤960 900.1 0.1 0.02 0.00 

1
M16 is an average of M16A and M16B. 

1
DNBMGS spectral characterization represents DNBHGS. DNBHGS not directly measured due to its high gain. 

 

 
Figure 1. Graphical representation of VIIRS spectral performance specification metrics. 
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Figure 2. Pedigree of the three J1 VIIRS RSR releases (circled).  Arrows with boxed numbers representing 

Version number connect measurements to releases.  Both the February 2015 V0 and June 2015 V1 releases were 

based upon analysis of the summer/fall 2014 SpMA based spectral measurements.  The V2 release incorporates 

the December 2014 NIST T-SIRCUS measurements into the analysis for VisNIR bands.  

 

 

The government-sponsored VIIRS DAWG was tasked to generate the at-launch VIIRS RSR for J1.  The RSR 

describe the in-band and out-of-band spectral dependence (Figure 1) of the light reaching the VIIRS 

detectors for each of the VIIRS 750 m resolution Moderate “M” bands and 375 m resolution Imaging “I” 

bands plus low and mid gain stages of the 750 m resolution Day-Night “DNB” band (Table 1).  The DAWG, 

consisting of subject matter experts (SMEs) from the NASA VIIRS Characterization Support Team (VCST), 

Aerospace Corporation, and the University of Wisconsin, participated on-site during the J1 VIIRS spectral 

measurements at the Raytheon El Segundo facility in summer/fall 2014 and again in December 2014, gaining 

insight on the measurement data and instrument performance as well as providing input to Raytheon on path 

forward decisions.  The analysis of the measurements leading to the V2 RSR release leveraged experience 

gained in a similar effort to analyze the S-NPP VIIRS RSR measurements
[3,4]

.  In addition, the V2 RSR were 

evaluated on four performance metrics (Figure 1): band center (center wavelength between 50% response 

levels), bandpass at 50% response, extended bandpass at 1% response (a.k.a. in-band response) and the 

maximum integrated out-of-band response (ratio of integrated out-of-band response to integrated in-band 

response).  This paper describes the development and performance of the J1 VIIRS V2 RSR. 

 

2. BACKGROUND ON MEASUREMENTS AND RSR VERSIONS 
 

Figure 2 provides a schematic linking the J1 VIIRS spectral measurements to the various releases of J1 VIIRS 

RSR.  Both the V0 (beta) and V1 releases were based entirely upon the Spectral Measurement Assembly 

(SpMA
[5]

) spectral measurements of all VIIRS bands in the summer/fall of 2014 at the Raytheon El Segundo 

facility.  The SpMA is a dual monochromator system using tungsten bulb and ceramic glow bar sources.  For 

the measurements, a slit reticle was placed in the beam path so that the illumination by the monochromatic 

light exiting the SpMA was constrained to a single band on the VIIRS focal plane (Figure 3) as the SpMA  



 
 

Figure 3. VIIRS VisNIR focal plane illumination (left) during the summer-fall 2014 spectral measurements using 

the SpMA (example of band M2 illumination) and during the December 2014 spectral measurements using T-

SIRCUS (entire focal plane illuminated).  Characteristics of each measurement system are given at right.  

 

 

was stepped through a range of wavelengths. This system level measurement highlights the performance of 

the filters overlying the detectors of each focal plane.  The SpMA measurement setup contrasts with that 

employed in December 2014 for the T-SIRCUS (Traveling Spectral Irradiance and Radiance Responsivity 

with Uniform Sources) facility
[6,7]

 developed and maintained by NIST (National Institute of Standards and 

Technology).  At the Raytheon facility, the T-SIRCUS laser-based source was coupled with fiber optics to 

transfer signal to an integrating sphere aligned to fully illuminate the VIIRS entrance aperture.  This provided 

a flight-like flood illumination of the entire VIIRS VisNIR focal plane (Figure 3).  Flood illumination results 

in an integrated response from VIIRS that includes elements of the filter performance plus optical and 

electronic effects, i.e. crosstalk, that may be present on the focal plane.  Due to constraints of the J1 VIIRS 

cryoradiator and the ambient test environment, spectral measurements using T-SIRCUS were limited to the 

VIIRS VisNIR focal plane bands.  These measurements, analyzed by the DAWG in September - December 

2015, and a CO2 correction to M13 are the new elements of the DAWG February 2016 V2 RSR release. 

 

The V0 (beta) release includes only detector RSR that were generated by Raytheon Corp analysts with 

DAWG SME oversight and input.  Detector and band average (over all detectors and subsamples) RSR for 

the V1 release, which replaced the V0 release, were generated in an independent analysis by the DAWG
[2]

 

and were used in early testing of VIIRS science algorithms.  For V2, which also includes detector and band 

average RSR, the additional VisNIR band measurements using T-SIRCUS were analyzed by the DAWG and 

then merged with the V1 RSR for an updated “fused” RSR for these bands.  The V2 release also includes an 

update of one thermal emissive band, M13, which was corrected to remove ambient CO2 influence on the 

source signal during the SpMA measurements.  For those bands that were not updated for V2 (M8-M12, 

M14-M16A/B, I3-I5, DNBMGS), the V1 detector and band average RSR were carried forward into V2 to 

provide a comprehensive set of RSR in the V2 release, allowing the V2 release to replace the V1 release.  

Details of the analysis leading to the V2 RSR release are provided in the next section. 



3. T-SIRCUS SPECTRAL MEASUREMENTS AND THE DAWG RSR ANALYSIS 
 

In the support of engineering test procedure 430 (ETP-430), the NIST T-SIRCUS system was deployed to the 

Raytheon El Segundo facility in the fall of 2014 and setup in an anteroom with an objective of measuring J1 

VIIRS spectral response and polarization performance for VisNIR bands.  T-SIRCUS was used previously to 

measure S-NPP VIIRS VisNIR band RSR at Ball Aerospace in Spring 2010
[4]

.  The VIIRS instrument was set 

up in an adjacent ambient clean room environment at Raytheon El Segundo with the 25 cm exit aperture of a 

100 cm spectralon-coated integrating sphere aligned to the VIIRS rotating telescope assembly (RTA), with no 

intervening optical elements in the ~0.9 m path between the sphere exit aperture and the VIIRS entrance 

aperture.  The RTA was fixed (not rotating) during all spectral measurements.  Fiber optic cables delivered 

the signal from the curtained T-SIRCUS laser system to the sphere.  To cover the 380-1000 nm spectral range 

of the VisNIR in-band and out-of-band response measurements, T-SIRCUS used multiple tunable lasers 

including Ti:Sapphire (~670-1000 nm), Dye R6G (~560-610 nm), Dye DCM (~600-680 nm), and doubled 

LBO OPO (~380-565 nm).  T-SIRCUS produces nearly monochromatic light with a bandpass ranging from 

0.001 nm to about 0.1 nm depending on the laser in use.  Co-incident with the spectral measurements, the 

output of the sphere was sampled nearly continuously by a radiance monitor mounted on the sphere and 

viewing the interior wall opposite of the sphere aperture.  The monitor data were used to produce an average 

sphere radiance and standard deviation for each measured wavelength.  The sphere radiance monitor was 

calibrated twice using the NIST LTD-107 radiometer, once before the onset of the spectral measurement 

program and updated after the completion of the measurement program. 

 

During the measurements, the T-SIRCUS laser in use was stepped through a series of wavelengths (a 

“sweep”), using a sequence consisting of a nominal 8, 21, or 28 second dwell or “collect” with a shutter 

blocking the source light (“shutter closed”) to capture the dark background signal, followed by a similarly 

timed collect with the source light on the detectors (“shutter open”).  The longer collects improved the signal-

to-noise ratio (SNR) in low signal spectral regions.  During a typical 21 second collect, VIIRS recorded 2048 

samples in each of about 11 “scans” (nominal 1.7864 seconds/scan) resulting in >20000 samples per collect 

(~8000 and 30000 samples, resp. for 8 and 28 second collects).  Since the RTA was not rotating, all data were 

collected on one side of the dual-sided Half Angle Mirror.  After completing the shutter open collect, the 

shutter was closed and the laser wavelength was tuned to the next setting until the sweep was completed or 

the laser mode had reached its useful spectral limit.  Near the limits of adjacent laser modes, overlapping 

spectral collects were obtained to help reveal any biases between laser modes in the transition regions.  Table 

2 summarizes elements of the data collects.  Overlapping in-band and out-of-band sweeps were necessary to 

avoid digital saturation by the powerful Ti:Sapphire laser in the high response zone of bands M6 and M7 

(sweeps 2-7, 10-13); saturated data was discarded. It is also noteworthy that the laser bandwidths are 

significantly smaller than the wavelength step.  This “picket fence” sampling approach using T-SIRCUS was 

evaluated during S-NPP VIIRS pre-launch testing and found to successfully capture the spectral response 

shape and amplitude when compared to the contiguous spectral measurements collected using the SpMA
[4]

. 

 

To eliminate noisy measurements due to T-SIRCUS laser source instability, shutter open collects for which 

the sphere radiance standard deviation (as measured by the radiance monitor) exceeded 2% (of signal) were 

discarded.  Shutter closed collects were averaged and subtracted from remaining averaged shutter open 

collects to provide a background corrected signal (“dn”) at each wavelength  

𝑑𝑛(𝜆) = 𝐷𝑁()̅̅ ̅̅ ̅̅ ̅̅ ̅
𝑜𝑝𝑒𝑛 − 𝐷𝑁()̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑐𝑙𝑜𝑠𝑒𝑑   .                                                      (1) 

Samples from scans at the beginning and end of the collects were generally discarded to avoid any partial 

scans (i.e. change of shutter status during the scan) being included in the averaging process.  A standard 

deviation statistic for DN was also computed for each scan for assigning data quality (described in step 2 



 
Table 2. J1 VIIRS spectral test data collection characteristics using T-SIRCUS. 

 

Sweep 
number 

Target Date Laser Mode 

Nominal 
Laser 

Bandwidth 
(nm) 

Spectral 
Stepsize 

(nm) 

Light 
Time 
(sec) 

Dark 
Time 
(sec) 

Description 

1 M7 IB 12/5/2014 Ti:Sapphire 0.001 1.0 5 3 835-901 nm Dry Run 

2 M7 IB 12/5/2014 Ti:Sapphire 0.001 1.0 8 8 835-901 nm First run 

3 M7 IB 12/5/2014 Ti:Sapphire 0.001 1.0 8 8 835-901 nm Interleave 

4 M7 IB 12/5/2014 Ti:Sapphire 0.001 1.0 8 8 835-901 nm Interleave 

5 M7 IB 12/5/2014 Ti:Sapphire 0.001 1.0 8 8 835-901 nm Interleave 

6 M6 IB 12/5/2014 Ti:Sapphire 0.001 0.4 8 8 729-765 nm First run 

7 M6 IB 12/5/2014 Ti:Sapphire 0.001 0.4 8 8 729-765 nm Interleave 

8 M5 IB 12/6/2014 Dye DCM 0.01 0.2 8 8 640-668 nm  

9 M5 IB 12/6/2014 Ti:Sapphire 0.001 0.2 8 8 667-680 nm  

10 OOB1 12/6/2014 Ti:Sapphire 0.001 1.0 21 21 800-899 nm 

11 OOB2 12/6/2014 Ti:Sapphire 0.001 1.0 21 21 700-800 nm 

12 OOB3 12/6/2014 Ti:Sapphire 0.001 1.0 21 21 899-1001 nm 

13 OOB4 12/7/2014 Ti:Sapphire 0.001 0.2 21 21 680-703 nm 

14 OOB5 12/8/2014 Dye DCM 0.01 1.0 21 21 630-685 nm 

15 M5 IB 12/8/2014 Dye DCM 0.01 0.2 21 21 595-660 nm 

16 OOB6 12/8/2014 Dye DCM 0.01 1.0 21 21 631-606 nm 

17 OOB7 12/8/2014 Dye R6G 0.01 0.2 21 21 562-582 nm 

18 OOB8 12/8/2014 Dye R6G 0.01 1.0 21 21 578-606 nm 

19 M1 IB 12/9/2014 LBO OPO 0.1 0.5 28 28 417-430 nm 

20 M1 IB 12/9/2014 LBO OPO 0.1 0.5 28 28 391-417 nm 

21 M2 IB 12/9/2014 LBO OPO 0.1 0.5 28 28 422-463 nm 

22 M1 IB 12/9/2014 LBO OPO 0.1 0.25 28 28 417-431 nm 

23 M4 IB 12/10/2014 LBO OPO 0.1 0.5 28 28 535-548 nm 

24 M4 IB 12/10/2014 LBO OPO 0.1 0.5 28 28 545-558 nm 

25 M3 IB 12/10/2014 LBO OPO 0.1 0.5 28 28 463-509 nm 

26 M3 IB 12/10/2014 LBO OPO 0.1 0.5 28 28 466-487 nm 

27 M3 IB 12/10/2014 LBO OPO 0.1 0.5 28 28 505-512 nm 

28 OOB9 12/10/2014 LBO OPO 0.1 1.0 28 28 510-535 nm 

29 M1 IB 12/10/2014 LBO OPO 0.1 0.5 28 28 391-395 nm 

30 M1 IB 12/10/2014 LBO OPO 0.1 0.5 28 28 391-417 nm 

31 OOB10 12/10/2014 LBO OPO 0.1 1.0 28 28 379-390 nm 

32 M4 IB 12/10/2014 LBO OPO 0.1 0.5 28 28 539-563 nm 

33 OOB11 12/10/2014 LBO OPO 0.1 2.0 28 28 490-560 nm 

34 OOB12 12/11/2014 LBO OPO 0.1 2.0 28 28 380-420 nm 

35 OOB13 12/11/2014 LBO OPO 0.1 2.0 28 28 419-470 nm 

36 OOB14 12/11/2014 Dye DCM 0.01 1.0 21 21 634-685 nm 

37 OOB15 12/11/2014 Dye DCM 0.01 2.0 21 21 604-631 nm 

38 OOB16 12/11/2014 Dye R6G 0.01 2.0 21 21 562-635 nm 

39 M4 IB 12/11/2014 LBO OPO 0.1 0.5 28 28 555-562 nm 

40 M4 IB 12/11/2014 LBO OPO 0.1 0.5 28 28 555-563 nm 

“IB” = in-band; “OOB” = out-of-band 

 

 

 



later in this section).  The dn values for each detector were then calibrated to absolute spectral response 

(ASR) using the co-incident sphere radiance LSph from the monitor observations 

 

𝐴𝑆𝑅(𝜆) =
𝑑𝑛 ()

𝐿𝑆𝑝ℎ()
  .                                                                       (2) 

 

Calibrating the response measurements to absolute response (i.e. ASR) allowed simple and effective 

combining of spectrally adjacent measurements from different sweeps without introducing biases due to 

source variation between sweeps.  ASR was then converted to RSR by normalizing to the peak response 

 

𝑅𝑆𝑅(𝜆) =
𝐴𝑆𝑅()

𝐴𝑆𝑅𝑀𝑎𝑥(𝜆𝐴𝑆𝑅𝑀𝑎𝑥
)

  .                                                            (3) 

 

After generation of the T-SIRCUS based RSR, additional steps were taken leading to a high quality band 

average fused RSR in which the T-SIRCUS based RSR were merged with the SpMA based RSR from the 

June 2015 V1 release.  The fused RSR combine the superior integrated response enabled by the flood 

illumination approach of the T-SIRCUS system in the high response zone, with the better quality data of the 

SpMA measurement system in the low response zone.  The effect of these steps is graphically depicted in the 

example of Figure 4. 

 

1. Remove inconsistent/rogue response data in the T-SIRCUS based RSR. This removes out-of-family 

response that has met the sphere radiance 2% standard deviation test but remains out-of-family.  

Compare upper left (baseline) to upper middle panel in Figure 4. 

2. Apply a standard error of the mean (SEM) statistic threshold to the T-SIRCUS based RSR to 

distinguish high from low quality response.  The SEM is the root sum square of the individual scan 

standard deviations for each wavelength divided by the square root of the sample size.  The SEM of 

all detectors was averaged to a band average SEM.  The band average SEM threshold was chosen 

subjectively for each band after close inspection of the response data for all detectors and is intended 

to separate noise-driven response from light-driven response.  This is shown in the upper right panel. 

3. Remove all low quality response from the T-SIRCUS based RSR.  Shown in the lower left panel. 

4. Merge high quality T-SIRCUS based RSR with SpMA based RSR to form a fused RSR. The spectral 

gaps left by discarding the low quality response in the T-SIRCUS based RSR are filled with SpMA 

based response.  Any SpMA based response outside the spectral boundaries of the T-SIRCUS based 

response is also added.  This is shown in the bottom middle panel. 

5. Linearly average the fused RSR over all detectors and subsamples to make the band average RSR.  

Low quality response is assigned a response value of 1E-10.  This is depicted in the lower right panel.  

The band average fused RSR is provided in the V2 release of the J1 VIIRS VisNIR band RSRs 

(except DNBMGS which experienced saturation during T-SIRCUS based measurements) and is used 

to populate the SDR RSR Lookup Table (LUT) utilized by the J1 VIIRS SDR product algorithm.  

 

In the M3 example of Figure 4, the noise floor is generally at or below 1E-04.  This is typical of most VisNIR 

wavelengths for M bands, although the noise floor is typically slightly higher in the 470-520 nm region.  The 

VisNIR M bands are all dual gain bands with the exception of M6 which is a single gain band but with a 

limited dynamic range.  The VisNIR I bands however are single gain bands with gain settings intended to 

cover the full dynamic range of earth scenes; thus I band signal levels are much lower resulting in a noise 

floor that reaches and exceeds 1E-03 over a portion of the measured wavelengths.  For these bands, the 

majority of the out-of-band region is discarded as low quality response and thus the fusion with the SpMA 

measurements that support V1 adds considerable response information to the out-of-band region, assuring 

that all filter leaks down to 1E-05 response or lower have been captured in the fused RSR. 



 
 

Figure 4. Band M3 sequential processing steps from detector RSR (upper left) to final band average RSR (lower right). 

 

 

Band M13 was not measured during the T-SIRCUS based spectral measurements in December 2014, 

however the June 2015 M13 V1 RSR contains contamination from CO2 present during the SpMA based 

spectral measurements in the summer/fall 2014.  A correction of that contamination was attempted for the V2 

RSR release.  M13 is positioned spectrally near a strong CO2 absorption feature, with overlap of the 

absorption feature on the red side low response wing of M13.  The strength of the CO2 attenuation in the 

overlapping wavelengths coupled with the low response of the M13 RSR in that portion of the spectrum make 

it challenging to restore the true response level for those wavelengths, especially in light that the 

measurement program did not include real-time CO2 concentration monitoring.  However, the LBLRTM 

radiative transfer model
[8]

 was applied in an attempt to estimate and correct the CO2 attenuation present 

during the M13 spectral measurements.  Using a range of CO2 concentrations, model transmittances were 

compared to the M13 spectral measurements in an attempt to match the uncorrected observed shape of the 

M13 spectral measurements.  From this effort a CO2 concentration of 700 ppm was accepted for use in the 

model.  A 3 nm spectral shift was also applied to the model calculation, improving the match (Figure 5, left 

panel).  The measured relative spectral output (RSO) of the SpMA source was also corrected by discarding 

the RSO measurements contaminated by the CO2 attenuation and interpolating across the resulting spectral 

gap using the retained RSO measurement end points.  The CO2 corrected M13 RSR was then given by 

 

𝑅𝑆𝑅()𝑀13 
=

𝑑𝑛()

 (, 𝑇, 𝐶𝑂2)𝑎𝑚𝑏𝑖𝑒𝑛𝑡 ∗ 𝑅𝑆𝑂(𝜆, 𝑇, 𝐶𝑂2)
  ,                                               (4) 

where  (, 𝑇, 𝐶𝑂2)𝑎𝑚𝑏𝑖𝑒𝑛𝑡 represents the modeled atmospheric transmission over the 3.6 m ambient 

pathlength of the spectral measurement test setup for M13, and 𝑅𝑆𝑂(𝜆, 𝑇, 𝐶𝑂2) represents the CO2 corrected 

RSO.   



 
Figure 5. Band M13 raw response (black), model transmittance (red) and CO2 corrected response (green) for detector 7 

example in left panel. Circled data points in the CO2 absorption region are retained as anchors for interpolating response 

at rejected wavelengths.  Right panel shows final band average M13 RSR after CO2 correction and interpolation (blue).  

Improvement in the M13 RSR is self-evident when compared to the uncorrected V1 M13 RSR (red). 

 

 

Of the CO2 corrected response data points, three wavelengths were retained as best representing the true 

response across the CO2 absorption region, largely due to their relatively high transmittance.  These retained 

wavelengths (circled in Figure 5) were used as the tie points for a simple linear interpolation to replace the 

rejected wavelengths (“x” in Figure 5) in the CO2 absorption region.  The final V2 band average M13 RSR is 

shown with the same for V1, revealing the improvement in the CO2 absorption region (Figure 5, right panel).  

 

4. DAWG VERSION 2 RSR RESULTS AND DISCUSSION 
 

The J1 VIIRS V2 RSR release consists of the updated fused RSR for VisNIR bands M1-M7, I1, I2, and  

DNBLGS and an updated RSR for band M13 with the balance of the bands (M8-M12, M14-M16A/B, I3-I5, 

DNBMGS) drawn from the J1 VIIRS V1 RSR release of June 2015.  The comparison of V2 fused VisNIR 

RSR to V1 RSR shows modest shape change in the in-band region (Figure 6) and additional out-of-band 

response features (Figure 7).   While there is little difference in spectral position and bandpass, the higher 

spectral density of the V2 T-SIRCUS based measurements provides a smoother shape in the in-band high 

response zone as well as a smoother shoulder transition to the lower response zone (Figure 6).  The DNBLGS 

fused RSR in the high response zone is markedly changed with some broadening of the high response zone 

and a shift of energy blueward, likely due to the excellent spectral characterization of the source in the T-

SIRCUS measurements afforded by the real-time source monitoring.   

 

In the out-of-band spectral region (Figure 7), additional response features caused by electronic crosstalk show 

up in V2 fused RSR. These features show up as reduced-amplitude manifestations of the RSR shape of the 

“sender” bands in the output of the “receiver” bands.  The position of each M band is given by the vertical 

green lines in Figure 7 to help identify these features.  For example, when 400 nm light is illuminating the 

focal plane, an in-band response is observed in band M1 output (i.e. in-band response caused by light passing 

through the M1 filter) as expected, but an unexpected out-of-band response is also observed in M2-M7 output 

(i.e. crosstalk response).  The response in M2-M7 is understood to be a result of the illumination of band M1 

with in-band light, which is distributed electronically (as opposed to optically) to bands M2-M7.  There is no 

400 nm response apparent in bands I1 and I2 in Figure 7; however electronic crosstalk does exist in these 

bands at the subsample level (I bands collect 2 subsamples for each M band sample).  This electronic 

crosstalk from M1 essentially cancels out between the 2 subsamples of I1 and I2 in the band average RSR, i.e. 



 
 

Figure 6.  J1 band average fused RSR for V2 (red with shading) and V1 (blue) for the in-band spectral region.  High 

density T-SIRCUS measurements for V2 resulted in improved definition of spectral shape, especially in the high 

response and “shoulders” of the V2 RSR.  For the very broad DNBLGS RSR, which has high sensitivity to the source 

characterization, the T-SIRCUS source characterization has shifted energy to shorter wavelengths as compared to V1. 



 
 

Figure 7.  J1 band average RSR for V2 (red with shading) and V1 (blue) for the out-of-band spectral region. 

Electronic crosstalk features show up in many bands for V2.  Green vertical lines represent band center positions 

of each band and are intended to help recognize sender band response in each receiver band, e.g. out-of-band 

response centered at about 870 nm (center of M7 in-band) is showing up in V2 RSR for M1-M6. 



the crosstalk from one subsample is positive and the crosstalk from the next subsample is roughly an equal 

negative.   Nevertheless, the influence of electronic crosstalk will be present in unaggregated (i.e. single 

pixel) and in 3 pixel aggregated SDR data for J1 VIIRS I band observations (as it also is for S-NPP VIIRS).  

Out-of-band response exists at the spectral positions of all VisNIR M bands, though at varying signal levels 

for each receiver band.  Fortunately, the amplitude of this electronic crosstalk driven response remains 

relatively small and within specification on out-of-band contributions to total signal; this will be further 

illustrated in the comparison of J1 V2 RSR to the at-launch S-NPP RSR that will follow later in this section. 

 

There are many out-of-band features common to the V1 and V2 RSR.  These features are associated with 

spectral leaks in the filters overlying the VisNIR band detectors.  For example, local response peaks exist at 

about 780 nm and again at about 820 nm in band M3.  This is out-of-band light that has passed through the 

M3 bandpass filter to reach the detector; the fact that the T-SIRCUS and SpMA measurements show nearly 

identical response at these wavelengths strongly suggests that both systems are accurately quantifying the 

response.  Noticeable filter leaks exist in several bands, e.g. 900 nm in M1, 720 nm in M2, etc.  Importantly, 

these spectral leaks are well characterized in the RSR so that their influence on the SDR and downstream 

EDR products can be quantified.  Finally, there were no T-SIRCUS measurements beyond about 1000 nm; 

V2 response information beyond 1000 nm was taken entirely from the SpMA measurements of V1. 

 

The DAWG V2 band average RSR for J1 are graphically shown for all bands measured during the pre-launch 

test program in Figures 8 (in-band region) and 9 (out-of-band region).  The October 2011 band average 

RSR
[4]

 for S-NPP are also included in the plots.  Note that S-NPP reflective solar band RSR (M1-M11, I1-I3, 

DNBLGS, DNBMGS) have all undergone an on-orbit modulation caused by darkening of the rotating 

telescope assembly mirrors due to a tungsten contamination
[9]

; this darkening will not occur on J1 VIIRS and 

so for comparison purposes the S-NPP unmodulated October 2011 RSR are used here.   

 

J1 VIIRS VisNIR RSR show spectral position shifts and shape changes in the high response zone compared 

to S-NPP (Figure 8).  The VisNIR focal plane was redesigned for J1 to mitigate optical crosstalk caused by 

angle resolved scatter in the S-NPP VisNIR focal plane filters.  While these RSR changes are noticeable, the 

J1 VIIRS VisNIR band average RSR fall within the center wavelength and bandpass performance metric 

requirements (see Table 1).  Differences between S-NPP and J1 in-band RSR for S/MWIR, and LWIR bands 

are generally small and have been documented in a description of the J1 VIIRS V1 RSR
[2]

. 

 

Differences in the S-NPP and J1 VIIRS out-of-band RSR are also noticeable for VisNIR bands (Figure 9).  It 

is evident that bands I1, I2, and M1-M7 all show much less out-of-band response in the J1 RSR than in the S-

NPP RSR.  The out-of-band response consists of filter leaks plus optical and electronic crosstalks.  Optical 

crosstalk, which dominated much of the out-of-band response in S-NPP was greatly reduced with the J1 

VisNIR focal plane redesign, leaving small filter leaks and electronic crosstalk as the remaining contributors 

to the J1 out-of-band response.  Common electronic crosstalk features are identifiable in the S-NPP and J1 

RSR, perhaps most easily recognized at the wavelengths of M7 in receiver bands M2 and M5, but present in 

all bands.  All J1 VisNIR bands are compliant on the integrated out-of-band performance metric (Table 1).  

With exception of band M9, minor reductions or increases in out-of-band response are largely attributable to 

data quality differences at low response (< 1E-04) wavelengths.  For S-NPP band M9, a response just outside 

of the in-band region contributed significantly to the integrated out-of-band response calculation.  That 

feature is not present in J1, and may have been an artifact of the analysis for S-NPP.  

 

While not presented in Figures 8 and 9, the DAWG J1 VIIRS V2 RSR also include an “M16” RSR, which is 

an average of the M16A and M16B RSR and is intended to represent response for an integrated signal of 

M16A and M16B. On-orbit nominal operations will downlink the integrated M16 signal for inclusion in the 

SDR product.  The M16 RSR was drawn from the DAWG V1 RSR for J1. 



 

 

 

Figure 8.  J1 (red shaded) and S-NPP (blue, labeled as “F1”) band average RSR for the in-band spectral region.  

Spectral position and shape differences are prevalent for VisNIR bands (I1, I2, M1-M7) due to redesign of the J1 

VIIRS VisNIR focal plane.  SWIR band M8 (along with other SWIR bands shown in continuation of Figure 8) 

shows minor shape differences likely due to the redesign of J1 VIIRS dichroic #2, which governs reflection and 

transmission of light to the S/MWIR and LWIR focal planes. 

 

 

 



 

 

 

Figure 8 (Cont.). SWIR bands M9-M11, I3 and MWIR bands M12, M13, I4 all show minor shape differences 

between S-NPP and J1 while largely consistent on spectral position.  LWIR bands M15, M16A/B and I5 also 

show minor shape differences while M14 remains largely unchanged.  Shape differences likely due to redesign of 

J1 VIIRS dichroic #2, as well as the correction to remove the influence of CO2 on the M13 RSR. 

 

 

 

 

 



 

 

 

 

Figure 9.  J1 (red shaded) and S-NPP (blue, labeled as “F1”) band average RSR for the out-of-band spectral 

region.  J1 VIIRS out-of-band response is significantly reduced for all J1 VisNIR bands compared to S-NPP due 

to the redesign of the J1 VIIRS VisNIR focal plane, bringing the integrated out-of-band performance metric into 

compliance for the J1 bands.  J1 SWIR band M8 out-of-band performance is comparable to that of S-NPP. 

 

 

 

 

 



 

 

 

 

Figure 9 (Cont.).  SWIR bands (M9-M11, I3), MWIR bands (M12, M13, I4) and LWIR bands (M14-M16A/B, 

I5) all show comparable out-of-band response to that of S-NPP.  Some elimination of low out-of-band response 

(< 1E-04) in M15 and M16A/B may be a result of data quality differences between J1 and S-NPP measurements. 

 

 

 

 

 

 



5. VISNIR BAND RSR UNCERTAINTY 
 

An estimate of wavelength and response uncertainty associated with the T-SIRCUS VisNIR RSR 

measurements can be based upon the variability of the data collected during the measurements.  At each 

measured wavelength, standard deviation statistics on laser wavelength, source variability and VIIRS signal 

were collected in real-time or generated in the analysis.  The laser wavelength deviation statistic suggests that  

wavelength uncertainty is less than 0.1 nm for the vast majority of the measured wavelengths, with isolated 

occurrences of up to 0.5 nm, primarily in the 500-600 nm spectral range.   

 

The VisNIR band response is defined by the VIIRS output signal and the T-SIRCUS output radiance during 

the measurements (see equations 1-3).  The response uncertainty was estimated by perturbing the dn and Lsph 

terms of equation 2 using the available SEM and standard deviation statistics, resp., and calculating the root 

sum square of the two terms.  Uncertainties are generally at .001 or lower for bands M1-M7 and between .01 

and .001 for the DNB and I1 and I2, reflecting the low gain and thus low signal levels recorded in those bands 

during the measurements.  There are isolated uncertainties up to 0.01 and higher in all M bands as well in the 

out-of-band region, though the response levels recorded at these wavelengths remain in family with 

neighboring wavelengths.  The in-band uncertainty is dominated by the uncertainty in the sphere radiance, 

which is magnified by the high signal levels of the high response zone, whereas the out-of-band region is 

dominated by the uncertainty in the VIIRS signal, reflecting the low signal levels in the out-of-band region in 

most bands.  As expected, the poorest performance is in the M3 spectral region where the T-SIRCUS LBO 

OPO laser instability is largest and in the I1 and I2 out-of-band regions where signal levels are lowest.   

 

6. SUMMARY 
 

This paper provides an introduction to the J1 VIIRS at-launch band average RSR through the DAWG 

February 2016 Version 2 (V2) RSR release.  The V2 release, which replaces the V1 release of June 2015, 

contains updates to VisNIR bands DNBLGS, I1, I2, and M1-M7, improving upon the V1 release by 

characterizing the presence of electronic crosstalk in those bands through the addition of the December 2014 

NIST T-SIRCUS RSR measurements to the analysis to form a fused RSR.  Band M13 is also updated in V2 

by using a forward model to predict and remove the influence of CO2 present during M13 RSR 

measurements.  For all bands not updated in V2 (DNBMGS, I3-I5, M8-M12, M14-M16A/B), the V2 release 

contains the RSR that were released in V1. 

 

There are significant spectral position and shape differences between J1 VIIRS RSR and those of S-NPP 

VIIRS.   A redesign of the VisNIR focal plane to reduce the influence of optical crosstalk in J1 has resulted in 

these RSR changes.  Importantly the RSR changes are robustly measured and documented for the user 

community and the changes noted for J1 either improve upon or maintain the spectral performance of S-NPP 

as described by the spectral performance metrics.  The V2 release, including the band average RSR, 

supporting detector RSR, and readme document are available on the password-protected NASA eRoom at 

https://jpss-erooms.ndc.nasa.gov/eRoom/JPSSInstruments/VIIRSF2_JPSS1/0_38007.  The V2 release will be 

undergoing review for public release before the anticipated launch of J1. 
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